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Abstract. We present a versatile, powerful, and user-friendly
chemical data assimilation toolkit for simultaneously opti-
mizing emissions and concentrations of chemical species
based on atmospheric observations from satellites or sub-
orbital platforms. The CHemistry and Emissions REanaly-
sis Interface with Observations (CHEEREIO) exploits the
GEOS-Chem chemical transport model and a localized en-
semble transform Kalman filter algorithm (LETKF) to de-
termine the Bayesian optimal (posterior) emissions and/or
concentrations of a set of species based on observations and
prior information using an easy-to-modify configuration file
with minimal changes to the GEOS-Chem or LETKF code
base. The LETKF algorithm readily allows for nonlinear
chemistry and produces flow-dependent posterior error co-
variances from the ensemble simulation spread. The object-
oriented Python-based design of CHEEREIO allows users
to easily add new observation operators such as for satel-
lites. CHEEREIO takes advantage of the Harmonized Emis-
sions Component (HEMCO) modular structure of input data
management in GEOS-Chem to update emissions from the
assimilation process independently from the GEOS-Chem
code. It can seamlessly support GEOS-Chem version up-
dates and is adaptable to other chemical transport models
with similar modular input data structure. A post-processing
suite combines ensemble output into consolidated NetCDF
files and supports a wide variety of diagnostic data and visu-
alizations. We demonstrate CHEEREIO’s capabilities with
an out-of-the-box application, assimilating global methane
emissions and concentrations at weekly temporal resolu-

tion and 2◦× 2.5◦ spatial resolution for 2019 using TRO-
POspheric Monitoring Instrument (TROPOMI) satellite ob-
servations. CHEEREIO achieves a 50-fold improvement in
computational performance compared to the equivalent ana-
lytical inversion of TROPOMI observations.

1 Introduction

Data assimilation is a field of applied mathematics that stud-
ies the most probable combination of a physical model, ob-
servational data, and prior information to define the state of
a system. Many modern data assimilation algorithms have
been motivated by problems in numerical weather prediction
(Kalnay, 2003), and the field has more recently expanded
to address problems in atmospheric chemistry (Elbern and
Schmidt, 2001; Kahnert, 2008; Bocquet et al., 2015). The
physical model, also called the forward model, predicts the
observations on the basis of knowledge of the state of the sys-
tem. For assimilation of chemical concentrations (chemical
data assimilation), this forward model is a chemical transport
model (CTM) that simulates the 3D fields of species concen-
trations by solving the corresponding continuity equations
(Brasseur and Jacob, 2017). With the advent of satellite con-
stellations measuring atmospheric composition together with
increasingly dense networks of surface observations, chemi-
cal data assimilation is now commonly used to quantify emis-
sions (Miyazaki et al., 2017; Jiang et al., 2018; Qu et al.,
2019), to construct 3D concentration fields for chemical re-
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analyses and forecasts (Miyazaki et al., 2015, 2020; Flem-
ming et al., 2015; Ma et al., 2019), and to diagnose CTM
biases (Emili et al., 2014; Stanevich et al., 2021). The use
of chemical data assimilation to quantify emissions is com-
monly referred to as an inversion in the atmospheric chem-
istry community.

Most data assimilation algorithms involve the optimization
of a Bayesian scalar cost function J (x) assuming Gaussian
error probability density functions (PDFs) (Brasseur and Ja-
cob, 2017).

J (x)= (x− xb)T(Pb)−1(x− xb)+ (y−H(x))T

×R−1(y−H(x)) (1)

Here x is the state vector to be optimized (consisting of
emissions and/or concentrations), xb is the initial prediction
of the state vector based on prior information or a forward
model forecast, Pb is the prior (also called background or
forecast) error covariance matrix, y is the suite of observed
atmospheric concentrations arranged as a vector, H( q) is an
observation operator that transforms the state vector x from
the state space to the observation space, and R is the obser-
vational error covariance matrix. In the case of a state vector
of emission fluxes, the observation operator H( q) is a CTM
mapping emissions to the observed concentrations. Solving
for the minimum of the cost function (∇J (x)= 0) defines
the optimized posterior (also called analysis) estimate xa for
the state vector.

In the case in which H( q) is linear (i.e., representable
by a matrix), an analytic solution is available with closed-
form characterization of the posterior error covariance ma-
trix (Rodgers, 2000). In nonlinear or high-dimensional lin-
ear cases, a variational approach can be used instead to it-
eratively minimize the cost function by numerical methods.
The three-dimensional variational approach (3D-Var) calcu-
lates the gradient of the cost function for observations y in
a time window sufficiently short that the time evolution of
the physical system can be neglected (Asch et al., 2016).
Four-dimensional variational assimilation (4D-Var) accounts
for nonlinear evolution of the system over the course of an
assimilation time window through use of the adjoint of the
physical model, which requires construction of the tangent
linear model (TLM) for the CTM; the TLM aligns the model
state with observations in time while preserving the correct
evolution of the physical system (Courtier et al., 1994).

Kalman filters are a general class of data assimilation sys-
tems where the time evolution of the state vector is optimized
by sequential assimilation of a time series of observations in
which the optimal solution at a given time step serves as a
basis for the prior estimate in the next time step. Assimi-
lation thus proceeds over successive assimilation time win-
dows, though the Kalman filter can also be run backward
(Rodgers, 2000). The original Kalman filter requires a linear
forward model, but it can be combined with the TLM of the
physical model to form the extended Kalman filter (EKF),

which applies to nonlinear problems. The EKF has been
used for atmospheric chemistry problems such as quantify-
ing emissions of nitrogen oxides (NOx ≡NO+NO2) from
NO2 satellite data (Mijling and van der A, 2012; Ding et al.,
2017).

Ensemble Kalman filters for chemical data assimilation,
including the localized ensemble transform Kalman filter
(LETKF) used in this work (Hunt et al., 2007), apply an
ensemble of CTM simulations over successive assimilation
time windows to approximate the prior error covariance ma-
trix Pb and its evolution over time. Like EKF and 4D-Var,
LETKF can be readily applied to nonlinear problems; how-
ever, it avoids the need for a TLM because it is powered by an
ensemble of CTM simulations which capture the nonlinearity
of the system. Each ensemble member is initialized with ran-
dom perturbations applied to emissions or concentrations of
interest, and the ensemble is evolved for the assimilation time
window using the CTM. At assimilation time, the ensemble
spread is used to approximate the prior error covariance ma-
trix Pb and from there solve for the minimum of the cost
function. The ensemble is then updated to reflect the opti-
mized state, including emissions and concentrations, and the
cycle repeats as in the case of the classic Kalman filter. Lo-
calization in LETKF means that optimization of a given state
vector element is done using only observations in a localized
domain of influence in order to make the problem compu-
tationally tractable. In practice, even though the state vector
optimized is quite large, the ensemble can be of modest size
(typically 32 or 48 members) and the LETKF will converge
on the correct solution as time progresses (Hunt et al., 2007).

LETKF has been used extensively in chemical data as-
similation and has benefits compared with other algorithms,
most notably the ease of implementation for a wide variety
of simulations. LETKF and related ensemble Kalman filter
methods have been used for CO2 flux inversions (Liu et al.,
2016; Kong et al., 2022); single-species studies of NO2,
SO2, and NH3 emissions (Miyazaki et al., 2012a; Dai et al.,
2021; van der Graaf et al., 2022); and analysis of methane
emission trends (Feng et al., 2022; Zhu et al., 2022). Multi-
species assimilation, 4D assimilation of temporally scattered
observations, and flexibility in state vector definition are easy
to implement under the LETKF framework; the algorithm
also provides detailed error characterization including cor-
relations as part of the solution. However, because ensem-
ble methods rely on a relatively small number of simulations
to simulate the problem space, the benefits of the LETKF
come with issues of undersampling, which will be discussed
in Sect. 2.2.

The ability of LETKF to simultaneously assimilate con-
centrations and emissions is of special importance to atmo-
spheric chemists. In chemical data assimilation for opera-
tional forecasting, updates are often only applied to concen-
trations, but this fails to address the root issue of incorrect
emissions, an especially acute problem for species with short
lifetimes such as NOx (Inness et al., 2015). On the other
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hand, inverse studies focused on optimizing emissions at-
tribute all systematic discrepancies between the model and
observations to emissions, even though CTM transport or
observing errors may be responsible; indeed, CO2 flux es-
timates calculated via inverse methods have been shown to
be sensitive to transport errors (Schuh et al., 2019; 2022).
Optimizing concentrations as well as emissions allows the
data assimilation system to address both issues, assuming
that prior error settings are posed appropriately. While this
is possible to do with other algorithms, it is easy to do with
LETKF due to the ability to add any additional parameter to
the prior error covariance matrix and apply variable local-
ization methods to optimize the application of observational
constraints on different sets of concentrations and emissions.

Here we present the CHemistry and Emissions REanalysis
Interface with Observations (CHEEREIO), a user-friendly
tool that provides a platform for versatile LETKF chemi-
cal data assimilation powered by the widely used GEOS-
Chem CTM. Implemented as a lightweight wrapper for
GEOS-Chem, CHEEREIO gives users the ability to de-
sign and run chemical data assimilation applications with-
out modifying model source code or learning a new code
base. CHEEREIO’s flexibility and simple design are en-
abled by the LETKF algorithm and the modular struc-
ture of GEOS-Chem, in particular its Harmonized Emis-
sions Component (HEMCO) data input component (Keller
et al., 2014; Lin et al., 2021). CHEEREIO is designed to
be easily configurable for a range of applications including
multi-species data assimilation, joint optimization of emis-
sions and concentrations, and near-real-time monitoring of
emissions. Coded in Python with an object-oriented frame-
work, CHEEREIO readily accommodates new observation
operators such as for new satellite instruments. CHEEREIO
and all of its components are open-source, ensuring scien-
tific transparency. CHEEREIO complements existing open-
source inversion tools including the Joint Effort for Data
Assimilation Integration (JEDI), a C++ and Fortran-based
platform for model-generic data assimilation (Trémolet and
Auligné, 2020), and PyOSSE, another Python-based plat-
form using GEOS-Chem for observing system simulation
experiments (https://www.geos.ed.ac.uk/~lfeng/, last access:
22 August 2023) (Feng et al., 2023). For atmospheric chem-
istry applications, CHEERIO is simpler to use than JEDI
and more versatile than PyOSSE. This paper provides a
high-level overview and demonstration of CHEEREIO; de-
tailed documentation and user support are available online
(cheereio.readthedocs.io).

2 CHEEREIO components

2.1 The physical model: GEOS-Chem

GEOS-Chem is a three-dimensional CTM driven by assim-
ilated meteorological data from the Goddard Earth Obser-

vation System (GEOS) of the NASA Global Modeling and
Assimilation Office (GMAO). Two alternative data sets can
be used, either the GEOS Fast Processing (GEOS-FP) data at
0.25◦× 0.3125◦ native resolution or the GEOS Modern-Era
Retrospective Analysis for Research and Applications ver-
sion 2 (MERRA-2) data at 0.5◦× 0.625◦ native resolution.
Both have 1 h temporal resolution for transport (archived
winds) and extend from the surface to the mesopause. GEOS-
Chem simulates atmospheric species concentrations by solv-
ing the coupled 3D Eulerian continuity equations on a global
or user-selected nested domain at the native grid resolution
of the GEOS data or at degraded resolution for computa-
tional economy. Input data files are regridded on the fly to
user-specified resolution using the Harmonized Emissions
Component (HEMCO) (Keller et al., 2014; Lin et al., 2021).
CHEEREIO supports all GEOS-Chem applications from ver-
sion 13.0.0 and later including oxidant–aerosol chemistry,
aerosol only, carbon gases, and mercury, either as global or
nested-grid regional simulations. GEOS-Chem High Perfor-
mance (GCHP) (Eastham et al., 2018; Martin et al., 2022),
which uses distributed memory rather than shared memory
for parallelization, is not currently supported.

HEMCO is a critical GEOS-Chem module enabling the in-
terface with CHEEREIO. It can apply gridded scaling factors
stored in NetCDF files to any input field, such as emissions.
This allows emissions updates calculated by CHEEREIO to
be seamlessly loaded into GEOS-Chem without modification
of source code.

2.2 The data assimilation algorithm: localized
ensemble transform Kalman filter (LETKF)

The LETKF algorithm optimizes a state vector of emissions
and concentrations to minimize the cost function in Eq. (1)
(Hunt et al., 2007). We initialize m ensemble members at
time to and run the forward model (GEOS-Chem) in par-
allel for a user-specified time (termed the assimilation win-
dow) for each of these ensemble members. Ensemble mem-
bers can be thought of as a Monte Carlo sample represent-
ing the spread of atmospheric conditions resulting from our
uncertainty in prior emissions; each member represents the
atmospheric conditions from a random emissions perturba-
tion sampled from a user-specified PDF. Before assimilation
begins, the ensemble is run for a spin-up period to ensure
the propagation of information from the perturbed emissions.
Alternatively, the problem can also be set up by perturb-
ing concentrations to represent prior uncertainty in the atmo-
spheric state. Ensemble size is typically between 24 and 48,
with the exact number to be determined by sensitivity testing,
where the user identifies a size that balances error minimiza-
tion with computational feasibility. Because ensemble meth-
ods randomly sample the parameter space, increasing ensem-
ble size gradually yields diminishing return. This is unlike
the analytical approach to inversions, where the number of
simulations is set by the size of the state vector and dimin-
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ishing return is defined by the rank of the problem (Nesser
et al., 2021). In general, fewer ensemble members are re-
quired if there are fewer parameters to optimize (Miyazaki
et al., 2012b; Liu et al., 2019). After the runs are complete,
we construct the state vectors xb

i representing the concentra-
tions and/or emissions to be optimized for each of the m en-
semble members (indexed by i).

The LETKF algorithm, which we describe in the remain-
der of this section, is typically applied to very large state
vectors, for which global optimization would be computa-
tionally prohibitive. The solution of Hunt et al. (2007) is to
localize the calculation within a certain radius of the grid
cell being optimized, considering only observations within
that radius. Localized state vectors are formed by concatenat-
ing emissions at a given grid cell with concentrations within
a given radius. Beyond reducing state vector size, this ap-
proach creates an embarrassingly parallel problem, where the
cost function can be minimized independently for every lo-
calized point. The Hunt et al. (2007) localization approach
also minimizes spurious correlations, which emerge in en-
semble approaches due to a limited sample size; because the
Monte Carlo sample is far smaller than the dimensionality of
the state vector, random points will be spuriously correlated
in the prior covariance matrix Pb encoded by the ensemble,
leading to an incorrect assimilation increment. The spurious
correlation problem is especially pronounced between dis-
tant grid cells where we would expect correlations to be near
zero, a problem eliminated by appropriate localization. Such
localization in space is not generally useful in the analytical
inversion approach, where distant correlations are set to zero
and observations are ingested sequentially (Brasseur and Ja-
cob, 2017). The precise radius used for localization should be
determined by the user via sensitivity tests, considering that
longer-lived species require larger localization radii; indeed,
within a single inversion, multiple localization radii can be
used for different components of the state vector (Miyazaki
et al., 2012b). For the remainder of the equations in this sec-
tion, all vectors and matrices are localized and computations
are performed in parallel.

To optimize the emissions and concentrations of a given
grid cell, we first construct the ensemble state vectors xb

i us-
ing model data. From these prior state vectors the prior per-
turbation matrix Xb is formed from the m vector columns
Xb
i .

Xb
i = xb

i − xb;xb =
1
m

∑m

i=1
xb
i (2)

Here Xb
i represents the ith column of the n×m matrix Xb

where n is the length of the state vector; each column of Xb

consists of the state vector from an ensemble member minus
the mean state vector. The prior covariance matrix Pb can
be constructed by multiplying Xb with its transpose (specifi-
cally, Pb

= (m− 1)−1Xb(Xb)T), but this is not used directly
in LETKF calculations.

The model predictions made during the assimilation win-
dow must be compared to observations. Hence we construct
prior vectors of simulated observations yb

i and a correspond-
ing simulated observation perturbation matrix Yb formed
from the m vector columns Yb

i .

Yb
i = yb

i − yb; yb
i =H

(
xb
i

)
; yb =

1
m

∑m

i=1
yb
i (3)

4D-LETKF, the method used in CHEEREIO, constructs
Yb
i such that all simulated observations are timed to line up

as closely as possible with actual observations (Hunt et al.,
2007). 3D assimilation, by contrast, only aligns observations
in space but uses a single model state (in particular, the state
at assimilation time) to construct Yb

i , leading to significant
representation error. For 4D-LETKF, we load in model his-
tory files closest in time to the observation of interest and
accept a modest representation error; the user can specify the
time resolution via the CHEEREIO configuration file. Hence
in practice we apply the operator H( q) to the forward model
history, not to the state vector which represents the model
state at a specific point in time. Methods which make use of
the TLM, like 4D-Var and EKF, avoid temporal representa-
tion error due to the continuous ingestion of observations on
the internal time step of the TLM, but they require major time
investment in TLM development and maintenance.

Computation of the cost function in Eq. (1) involves inver-
sion of the prior error covariance matrix Pb, but this is not
possible in the state space (of dimension n) because by con-
struction Pb is of rankm−1 (the columns of the n×mmatrix
Xb sum to the 0 vector). Hence a posterior error covariance
matrix Pa must be estimated in the m− 1 dimensional sub-
space S spanned by the ensemble perturbations, where the
inverse is well-defined. The mathematics simplify by treat-
ing Xb as a linear transformation from some m-dimensional
space S̃ to S, allowing us to redefine the cost function opti-
mization in S̃ where the relevant quantities are well-behaved
(Hunt et al., 2007). The posterior error covariance in S̃ noted
with a tilde P̃a is an m×m matrix computed as follows.

P̃a
=

(
(m− 1) · I

1+1
+ γ (Yb)TR−1Yb

)−1

(4)

The full derivation of P̃a is given in Hunt et al. (2007).
Here I is them×m identity matrix, R is the observational er-
ror covariance matrix, and γ is a regularization constant set
by the user. P̃a plays the same role in LETKF assimilation
as the posterior covariance matrix Pa plays in the classical
Kalman filter, connecting the state vector entries so that the
calculated update is consistent with the internal correlations
of the system. The regularization constant effectively scales
observational errors and is designed to balance the weight
given to observations within the assimilation window. 1 is
an inflation factor specified by the user, usually between 0
and 0.1, which accounts for overconfidence in the assimilated
ensemble; 1 does not affect the ensemble mean but it does
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increase the ensemble spread, with larger values pushing en-
semble members away from the ensemble mean. In practice,
ensemble spread can decrease with each assimilation cycle
to values so small that the system is no longer able to update
(nearly infinite confidence is given to the prior term, so sub-
sequent observations carry no weight). Indeed, if γ balances
the weight given to observations within the present assimila-
tion window, 1 can be thought of as a term that balances the
weight given to observations from all previous assimilation
windows.

The mean posterior state vector in the original space is
then given by

xa = xb+ γXbP̃a(Yb)TR−1
(
y− yb

)
, (5)

where y is the vector of observations. The posterior pertur-
bation matrix is given by

Xa
= Xb

(
(m− 1)P̃a

) 1
2
. (6)

From here, the new ensemble state vectors can be con-
structed by adding xa back to each column of Xa. The
LETKF gives error characterization from the assimilation; to
obtain this, we need to transform P̃a back from the space S̃
to the original state space. Since we defined S̃ with the lin-
ear transformation Xb, the posterior error covariance matrix
is given by

Pa
= XbP̃a(Xb)T. (7)

With the ensemble updated and errors characterized, the
ensemble can be evolved using GEOS-Chem for the next
assimilation window. Importantly, the ensemble is not re-
initialized for these new runs; the assimilated state of the
previous assimilation window becomes the initial prior state
of the next assimilation window. When the runs in the new
assimilation window are complete, the whole LETKF cycle
begins again.

Many variations of the ensemble Kalman filter algorithms
have been developed in the chemical data assimilation liter-
ature, each designed to better handle the behaviors of certain
atmospheric constituents. For example, the Carbon Tracker
CH4 system handles the assimilation of long-lived CH4 via
a sliding-window approach, where surface fluxes from a
given time period are estimated several times using a varying
set of observations that evolve in time (Peters et al., 2005;
Bruhwiler et al., 2014). Similarly, the run-in-place method
changes the behavior of the assimilation window to better
handle long-lived gases like CH4 (Liu et al., 2019). With the
run-in-place functionality activated, the LETKF assimilation
update is calculated using a long period of observations (e.g.,
1 week) but the assimilation window is advanced forward for
a smaller amount of time (e.g., 1 d). Run-in-place simulations
thus maintain linear growth in posterior perturbations and al-
low the period in which the assimilation update is calculated

to experience the emissions adjustment, giving the system
more time to correct assimilation errors. CHEEREIO sup-
ports many of these variations on the LETKF, as discussed in
Sect. 3.

3 Description of the CHEEREIO platform

In this section, we describe the implementation of the
LETKF in the CHEEREIO platform. We designed this tool to
ensure maximum scientific flexibility for a diverse user base,
while maintaining an abstracted interface to make the tool
easy to use.

3.1 General workflow

Figure 1 shows a schematic of the CHEEREIO workflow
including initialization, spin-up, sequential GEOS-Chem
forward model runs and LETKF assimilation, and post-
processing. Here we give a high-level overview of how
CHEEREIO can be customized and deployed for any chemi-
cal data assimilation applications with GEOS-Chem. In sub-
sequent sections, we will offer more detailed descriptions
of the software design and structure, omitting technical de-
tails provided in the web documentation (https://cheereio.
readthedocs.io, last access: 22 August 2023).

The CHEEREIO software package includes a suite of shell
and Python scripts for assimilation, run management, obser-
vation operations, and post-processing, which can be sepa-
rated into three main sequential periods in the CHEEREIO
workflow, as shown in Fig. 1: initialization time, runtime,
and post-processing time. Before initialization begins, users
specify the simulation they would like to run via an ensemble
configuration file (ens_config.json). CHEEREIO generates a
template GEOS-Chem run directory based on user settings,
which is copied into an ensemble of m run directories, one
per ensemble member, each with a unique set of emissions
perturbed according to user settings (Sect. 3.2). After the en-
semble is initialized, the user submits a batch script which
launches an ensemble of jobs, each running an instance of
GEOS-Chem. Once the model simulation for the assimila-
tion window is complete, CHEEREIO gathers model output
files and observation data and performs the LETKF assimi-
lation. The cycle of GEOS-Chem runs and LETKF assimila-
tion repeats until the assimilation is complete for the entire
user-specified period. Run management and LETKF imple-
mentation are discussed in Sect. 3.3. Upon completion, the
user can execute a post-process workflow job to make a de-
fault set of figures, movies, and consolidated data files; they
can also deploy pre-written functions to produce custom out-
put and statistics (Sect. 3.4). In the coming sections, we ex-
pand on each of these components of the CHEEREIO work-
flow.
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Figure 1. Schematic of the CHEEREIO workflow, divided into three steps: initialization, runtime, and post-processing. All simulations are
initialized with a template GEOS-Chem run directory generated by CHEEREIO according to user-specified settings, which is then copied
into an ensemble of m run directories, one per ensemble member, each with a unique set of emissions perturbed according to user settings.
At runtime, GEOS-Chem simulates atmospheric concentrations reflecting these perturbed emissions for each ensemble member, which are
then compared to observations to generate an assimilated suite of concentrations and emissions via the LETKF procedure. After the specified
period is assimilated, CHEEREIO post-processing scripts consolidate the ensemble into a set of data files, figures, animations, and statistics
for user analysis. Input data files are shown by dark blue cylinders on the left, while user settings are shown on the right.

3.2 Ensemble initialization

The CHEEREIO ensemble initialization workflow is di-
vided into four phases, as shown in Fig. 1: (1) template
run directory creation, (2) spin-up of template run directory,
(3) ensemble initialization and prior emissions sampling, and
(4) spin-up of the ensemble spread.

Initialization begins when the user specifies the simu-
lation they would like to run by modifying a configura-
tion file (ens_config.json), which includes all model and
assimilation settings. Table 1 lists important parameters
that can be tuned in this configuration file. LETKF results
respond strongly to the localization radius (LOCALIZA-
TION_RADIUS_km), the regularization factor γ (regular-
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Table 1. Selected parameters set by the CHEEREIO configuration file.

Parameter Description

General parameters

sim_name Type of GEOS-Chem simulation (oxidant–aerosol chemistry, aerosol only, carbon species, mer-
cury)

res Horizontal resolution
region For nested simulations, specifications for the nested domain
start_date, end_date Start and end dates for the assimilation
burn_in_end Discard results prior to this date
assim_time Length of the assimilation window

State vector settings

state_vector_conc Species concentrations in state vector
control_vector_emis 2D emissions in state vector
state_vector_conc_representation Representation of concentrations in the state vector (all 3D values, column sums, surface values,

etc.)

Output configuration

HistorySpeciesConcToSave Species concentrations to save to history files
HemcoDiagsToProcess Which HEMCO diagnostics to include in post-processing, such as total anthropogenic emis-

sions of a given species.

Observation configuration

observed_species Species observed
OBSERVER_dirs Directory storing observation files

LETKF settings

regularizing_factor_gamma Parameter γ , adjusts weight assigned to observations
inflation_factor Ensemble inflation factor 1
LOCALIZATION_RADIUS_km Localization radius, in kilometers (km)

ization_factor_gamma), and the ensemble inflation factor 1
(inflation_factor), all of which modulate the weight given
to observations in the assimilation calculation. The assim-
ilation window length (assim_time) governs the timescale
of the response of the LETKF system to changes in ob-
servations and also strongly influences results. Detailed in-
structions on all settings are in the online documentation
(cheereio.readthedocs.io). CHEEREIO then creates a tem-
plate GEOS-Chem run directory reflecting user settings,
which will eventually be copied into an ensemble of m run
directories, one per ensemble member; if users modify the
template before the ensemble is created, such as to customize
emissions inventories, their adjustments will be reflected in
each ensemble member. Hence the template run directory al-
lows users to customize their simulations beyond the param-
eters available in the ens_config.json configuration file. Like
any atmospheric model, CHEEREIO must be spun up before
any run begins so that it reflects realistic atmospheric condi-
tions; spinning up the template run directory allows the user
to run one universal spin-up simulation for all m ensemble
members.

With the template initialized, compiled, and spun up,
CHEEREIO copies the template into an ensemble of m run
directories. Each ensemble member is differentiated by a
unique initial perturbation to user-specified emissions, re-
flecting prior uncertainty in emissions. For example, users
interested in assimilating NO2 observations might specify
that they have some prior uncertainty in NOx emissions;
CHEEREIO will then initialize unique grids of NOx emis-
sions in each ensemble member run directory by draw-
ing samples from a user-specified PDF that perturb exist-
ing emissions inventories. These prior errors can be sampled
from a normal distribution and can include spatial correla-
tions specified by a correlation distance.

Users can choose to use emissions sampled from either a
normal or lognormal spread. If users opt for lognormal emis-
sions, then CHEEREIO samples multiplicative perturbations
from a normal distribution centered on zero and then ex-
ponentiates to obtain a lognormally distributed sample with
a mode of one (i.e., the prior). To meet the LETKF algo-
rithm assumptions, in the lognormal case emissions are trans-
formed back into a normal distribution during the LETKF
calculation, before being exponentiated back to a lognormal
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for use in GEOS-Chem. Benefits of using a lognormal spread
include natural protection against negative scaling factors
(the lognormal distribution is positive) and a more realistic
representation of high-tail uncertainties in emissions inven-
tories.

CHEEREIO grants wide flexibility to users in how emis-
sions perturbations are defined across the ensemble. Users
can group emissions of multiple species together into one
consolidated entry in the state vector (e.g., NOx), updated at
once at assimilation time. Users can also differentiate emis-
sions by source by separately perturbing subsets of emis-
sions, such as methane from oil and gas and methane from
agriculture. The resulting assimilation will provide the user
with separate emissions updates for each source, allowing
users to easily run source attribution studies. Sectoral separa-
tion of emissions is implemented naturally in the LETKF for-
mulation by defining the state vector so that separate source
sectors have separate 2D representations; if sources overlap
in space, the assimilation update will increment both accord-
ing to the correlation strength in the prior error covariance
matrix, which the user must keep in mind while interpreting
source separation results.

Before the assimilation cycle begins, users must run a
CHEEREIO-specific spin-up process to create a spread in
simulated atmospheric conditions across ensemble members,
reflecting the initial perturbations in emissions. Because the
LETKF algorithm uses spreads in simulated concentrations
across the ensemble to approximate the prior error covari-
ance matrix Pb, the model must be run for some period be-
fore assimilation begins in order to ensure that variations in
concentrations across ensemble members reflect variations in
emissions. If this ensemble-wide spin-up is neglected or run
for too short a period, Pb will be too small and observations
will be neglected (because they will be weighted negligibly
in the cost function).

3.3 Runtime

Figure 2 shows a schematic of the CHEEREIO run-
time processes. From a computational cluster perspective,
CHEEREIO is an array of m jobs, where m is the number
of ensemble members specified by the user; each job is al-
located p cores as specified by the user. Each job alternates
between running GEOS-Chem for an ensemble member and
running assimilation scripts for a subset of grid cells – each
parallelized separately across the p cores allocated to each
job. In this section, we discuss the implementation and con-
trol of this complex of processes.

3.3.1 Job control

As shown in Fig. 2, CHEEREIO begins when the user sub-
mits a job array initializing m jobs, one for each ensem-
ble member, each consisting of pcores within a single node.
Within each of the m jobs, the CHEEREIO runtime process

is implemented as a shell loop that repeats until the user-
specified period of interest is processed, switching smoothly
between running GEOS-Chem and running LETKF assimi-
lation calculations. Because the LETKF algorithm is an em-
barrassingly parallel algorithm, there is no need for complex
cross-node parallelization schemes powered by the Message
Passing Interface (MPI). Instead, each of the m jobs (par-
allelized independently across p cores) is coordinated by a
job controller, which executes the processes shown in light
red in Fig. 2. The job controller synchronizes GEOS-Chem
runs and LETKF assimilation routines across the ensemble,
ensuring that all jobs remain connected to one another.

At the start of a given assimilation window, each of the
m jobs calls GEOS-Chem for the current assimilation win-
dow. GEOS-Chem is parallelized within each job across
p cores with OpenMP. After completing GEOS-Chem for
the assimilation window, each individual job hangs until the
job controller indicates that assimilation can begin. Once all
GEOS-Chem runs are complete, the job controller initializes
the LETKF routine. Each computational core within each job
(a total of mp cores) is pre-assigned a set of grid cells to as-
similate, as the LETKF algorithm is embarrassingly parallel
by grid cell. As a result, the LETKF can make use of multi-
node parallelization without MPI; assimilated grid cells are
written to a temporary directory, which will be used to update
the entire ensemble once all mp cores finish the LETKF cal-
culation. Internal parallelization of p cores within each of the
m jobs is handled by GNU Parallel (Tange, 2018). Once all
expected grid cells are present, the job controller gathers as-
similated grid cell files, which represent assimilated concen-
trations and emissions, and overwrites GEOS-Chem restart
files (representing initial concentrations) and emissions for
each ensemble member. The job controller then cleans up
temporary files, advances the time period of interest to the
next assimilation window, and signals the job array to begin
another GEOS-Chem run. If the entire period of interest is
complete, then the job controller ends the job array. Different
LETKF options, activated from the configuration file, change
the behavior of the job control scripts; for example, with the
run-in-place functionality activated (Sect. 2.2), CHEEREIO
computes the LETKF assimilation update using a long period
of observations (e.g., 1 week) but advances the assimilation
forward for a smaller amount of time (e.g., 1 d).

CHEEREIO can easily handle emissions updates with-
out GEOS-Chem source code modification because of the
HEMCO input module (Keller et al., 2014; Lin et al., 2021).
Emission updates are represented by a gridded set of scaling
factors, initially randomized for each ensemble member in
the initialization process, which are present in each ensem-
ble member run directory in gridded COARDS-compliant
NetCDF format. After each assimilation calculation, the file
is updated by CHEEREIO to include the latest scaling fac-
tors and corresponding time stamp. HEMCO can read and
regrid these latest scaling factors on the fly, apply them to
the emissions fields, and feed the scaled emissions directly
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Figure 2. Schematic of CHEEREIO runtime routines and job control procedures. CHEEREIO is run as an array of m separate jobs on a
computational cluster, one for each ensemble member. These m jobs, operating in parallel, alternate between running GEOS-Chem and
running the LETKF algorithm for a subset of grid cells, as shown by the light yellow boxes; the m jobs are coordinated by a single job
controller shared by the entire ensemble (shown in light red), ensuring that the ensemble remains synchronized. Boxes in blue show data
input into CHEEREIO processes.

into GEOS-Chem, enabling seamless interoperability across
CHEEREIO runtime processes.

3.3.2 Assimilation computation

LETKF assimilation is implemented in CHEEREIO using
a structure of nested Python objects, designed primarily to
ensure that new observation operators can immediately plug
into CHEEREIO and work automatically, without requiring
users to have deep knowledge of the CHEEREIO code struc-
ture. We use Python because of its familiarity to a broad
user base, because of its ease of use, and because the object-
oriented structure of the language makes it well-suited to the
modular design of CHEEREIO.

CHEEREIO works by creating a suite of objects called
translators, which load data from gridded NetCDF files used
by GEOS-Chem runs, form one-dimensional ensemble state
vectors xb

i and prior vectors of simulated observations yb
i that

are acceptable to the CHEEREIO LETKF routine, and con-
vert assimilated state vectors back into a format acceptable
to HEMCO for input into GEOS-Chem. Translator objects
are assembled in a nested structure, with low-level transla-
tors performing I/O operations and basic calculations to form
vectors like xb

i and yb
i , which are then passed to objects that

operate at a higher level of abstraction. Abstract objects do
the actual LETKF calculations without any knowledge of the
GEOS-Chem simulation or even the user-defined rules on
how to construct the state vector, enabled by the fully gen-
eral nature of the LETKF. Because all the details of a specific
simulation are handled by low-level translators, which are
designed to easily expand to include new capabilities added
by the community, users are able to modify only one small
part of CHEEREIO without compromising the overall work-
flow.

For example, CHEEREIO handles observations by us-
ing objects inheriting from the Observation_Translator class,
a low-level translator which loads observations from file
and compares them to GEOS-Chem output. In object-
oriented programming, inheritance can be thought of as
a sophisticated form of templating. Indeed, the Observa-
tion_Translator class itself is mostly empty and contains in-
structions to the user on how to write two standardized meth-
ods to (1) read observations from file and process them into
a Python dictionary formatted for CHEEREIO and (2) gen-
erate simulated observations yb

i from GEOS-Chem output.
Users can easily write their own class inheriting from Ob-
servation_Translator for a specific use case (like a partic-
ular surface or satellite instrument) by implementing these
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two methods, optionally employing a provided observation
toolkit. Any class written with this strict template will then
plug in automatically to the rest of the CHEEREIO work-
flow and can be activated from the main configuration file.
CHEEREIO also comes with some pre-written observation
operators (such as for the TROPOspheric Monitoring Instru-
ment – TROPOMI – and the Ozone Monitoring Instrument
– OMI). Many different observation operators can be used
simultaneously, making it straightforward to perform multi-
species data assimilation or assimilation using both surface
and satellite data within the CHEEREIO framework. Again,
because Observation_Translators handle the details of inter-
preting a specific observation type, the rest of CHEEREIO
can remain ignorant of specifics and operate in a fully ab-
stract environment that can be reused for all simulations.

The Observation_Translator template includes tools that
support aggregating observations into “super-observations”
(Eskes et al., 2003; Miyazaki et al., 2012a). If super-
observations are enabled, CHEEREIO will average observa-
tions onto the GEOS-Chem spatiotemporal grid. Users can
opt to supply a relative or absolute error for observations and
opt to either (1) apply these values consistently regardless
of whether observations are aggregated or (2) reduce errors
as observations are aggregated following a square root law
or another functional form supplied by the user (such as an
empirical curve) to account for correlations and model trans-
port error. Users can also use error statistics supplied with
the observations (such as retrieval errors), with the super-
observation error standard deviation calculated according to
a function they specify. The default super-observation error
standard deviation σsuper is calculated as follows.

σsuper =

√[(
1
n

∑n

i=1
σi

)
·

(
1− c
n
+ c

)]2

+ σ 2
transport (8)

Here σi is an individual observation error standard devia-
tion (in the same units as the observation), n is the number of
observations aggregated into a super-observation, c is the er-
ror correlation between the individual observations averaged
into the super-observation, and σtransport represents model
transport errors that can be supplied by the user. Model trans-
port error is included as a separate term because transport er-
rors are perfectly correlated for a given model grid cell and
therefore irreducible by averaging. Model transport errors in
GEOS-Chem can be estimated by the residual error method
(Heald et al., 2004; Lu et al., 2021; Chen et al., 2023), though
this does not account for any systematic biases from GEOS
meteorology or the chemical mechanism. Biases in meteo-
rology could be addressed in the future by using the online
version of GEOS-Chem coupled to the GEOS model (Long
et al., 2015; Hu et al., 2018; Keller et al., 2021).

3.4 Post-processing

When the CHEEREIO runtime is process complete, users
can execute the post-process batch script to automatically

consolidate GEOS-Chem diagnostic and emissions output
into NetCDF files, along with a file pairing actual observa-
tions with simulated observations from the ensemble. Users
can also run a control (“prior”) simulation with no assimi-
lation within the CHEEREIO environment; output from this
run is automatically handled by the post-processing utility
to produce plots and data that compare assimilated output to
control output. CHEEREIO also produces a suite of graphs
and animations depicting a variety of output including scal-
ing factors, concentrations, emissions, and observation in-
formation. All plots of results in Sect. 4 of this paper are
generated by the CHEEREIO post-processing utility with
no additional code. To facilitate additional analysis, a post-
processing toolkit is provided for user processing of both
consolidated output files and raw ensemble output.

4 Example application: global optimization of methane
emissions

Here we demonstrate an end-to-end example application of
CHEEREIO to the problem of optimizing global emissions
of methane with high temporal (weekly) resolution by assim-
ilation of TROPOMI satellite observations for the full year of
2019. The application uses the standard CHEEREIO config-
uration files, and all figures and statistics are automatically
produced by CHEEREIO with no additional programming.
There are weaknesses in the inversion parameters that we
identify but do not try to resolve as the application is for
demonstration purposes only.

4.1 Demonstration simulation setup

For our demonstration, we use the methane
simulation from GEOS-Chem version 14.0.2
(https://doi.org/10.5281/zenodo.7383492, The Interna-
tional GEOS-Chem User Community, 2022) at 2.0◦× 2.5◦

spatial resolution and following the setup described by Qu
et al. (2021). Methane emissions come from anthropogenic
sources including livestock, oil and gas, coal mining, land-
fills, wastewater, and rice cultivation, as well as from natural
sources including wetlands and termites. Loss is primarily
due to oxidation by OH, with additional minor terms from
oxidation by Cl atoms, stratospheric oxidation, and soil
uptake.

Methane observations used for data assimilation are from
the TROPOspheric Monitoring Instrument (TROPOMI) sci-
entific product 2.2.0, shown in Fig. 3 (Lorente et al., 2021a).
TROPOMI retrieves daily global dry methane column mix-
ing ratios (XCH4) at 5.5 km× 7 km nadir pixel resolution
at ∼ 13:30 local solar time. In our demonstration, we fil-
ter TROPOMI observations to include only those over land
below 60◦ latitude with a quality assurance value > 0.5,
shortwave infrared (SWIR) albedo between 0.05 and 0.4
to avoid biases over dark scenes or highly reflective (often
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Figure 3. TROPOMI observations used in the CHEEREIO demo for weekly inversion of methane emissions. (a) Average TROPOMI XCH4
for 2019, after filtering as described in the text. (b) Number of TROPOMI observations used. Values are plotted on the GEOS-Chem 2◦× 2.5◦

grid.

Table 2. Selected parameters from the CHEEREIO configuration
file for methane demonstration.

Parametera Value

General parameters

sim_name CH4
res 2.0◦× 2.5◦

start_date, end_date 20181101, 20200101
burn_in_end 20181225
assim_time 168b

State vector settings

state_vector_conc CH4
control_vector_emis CH4
state_vector_conc_representation 3D

Output configuration

HemcoDiagsToProcess EmisCH4_Total

Observation configuration

observed_speciesc CH4_TROPOMI : CH4
TROPOMI_dirsc CH4 : /path/to/tropomi/netcdf/files

LETKF settings

regularizing_factor_gamma 1
inflation_factor 0.03
LOCALIZATION_RADIUS_km 500

a Parameter descriptions are in Table 1. b Hours, equal to 1 week. c Many parameters are
supplied in key : value form; details in the online documentation.

desert) scenes, a low blended albedo (< 0.75) to avoid snow-
covered scenes (Wunch et al., 2011; Lorente et al., 2021a),
and SWIR aerosol optical thickness less than 0.1. As shown
in Fig. 3, retrieval count after filtering varies strongly by lo-
cation. CHEEREIO regrids the native XCH4 observations on
the fly to the GEOS-Chem grid resolution, as discussed later
in this section.

A subset of the assimilation settings for this demonstra-
tion, passed to CHEEREIO through the configuration file,
is listed in Table 2. The state vector includes weekly time-
dependent global 3D concentrations as well as emissions on
the 2◦× 2.5◦ grid over land excluding poleward of 60◦. We
use a 24-member ensemble, consistent with the LETKF en-
semble size used for carbon fluxes in Liu et al. (2019). Each

ensemble member is initialized with randomized methane
emissions on the 2◦× 2.5◦ grid that range from approxi-
mately 50 % to 150 % of prior values, based on a user-
specified prior error parameter. Initial emissions for individ-
ual members are sampled from a normal distribution with
spatial correlation and are normalized so that the initial en-
semble mean emissions equal the prior emissions on the
2.0◦× 2.5◦ grid. We spin up the model for each ensemble
member for 4 months with these initial emissions and then
further multiplicatively increase the ensemble standard de-
viation of methane concentrations by a factor of 5; the goal
of this scaling is to emulate a much longer spin-up run of
GEOS-Chem. We then adjust each ensemble member by the
same global multiplicative factor so that the ensemble mean
methane concentrations are equal to TROPOMI observations
at the start of the assimilation period. Furthermore, we dis-
card the first 2 months of assimilated output; we find that the
LETKF system has a lag time between when assimilation
begins (November 2018) and when emissions updates begin
to stabilize, which we call the burn-in period. To reduce the
time required for burn-in, for November and December 2018
we use a high regularization constant of γ = 5 to artificially
increase the weight of observations during the burn-in period.

The user does not specify how assimilation increments are
split between emissions and concentrations: the LETKF for-
malism simultaneously updates different aspects of the state
vector, emissions and concentrations included, solely accord-
ing to the correlations between state vector elements repre-
sented in the prior error covariance matrix Pb, which is deter-
mined by the spread of the CTM ensemble. The prior error
in concentrations is determined by the spread in concentra-
tions resulting from the perturbed emissions in each ensem-
ble member. Nevertheless, performance can be enhanced by
establishing different parameters for different components of
the state vector, such as using different localization radii or
inflation schemes (Miyazaki et al., 2012b; Bisht et al., 2023).

Following ensemble spin-up and the burn-in months, we
run the model with assimilation for 1 year (2019). We simul-
taneously assimilate 3D concentrations of methane as well
as emissions; the LETKF algorithm natively computes prior
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Figure 4. Time-dependent corrections to global methane concentrations and emissions from the weekly LETKF assimilation of TROPOMI
observations as demonstrated by CHEEREIO. Panel (a) shows the global mean methane dry column mixing ratios (XCH4) in the TROPOMI
observations, the control simulation using prior emissions, and the simulation using posterior emissions. Panel (b) shows the global prior
and posterior emissions. Posterior values are ensemble means from the assimilation (standard deviations from ensemble members as dotted
lines). The assimilation was conducted for 1 year from January through December 2019.

error variance from the ensemble spread (for example, ac-
counting for strong error correlation in the vertical). We use
an assimilation period of 1 week and optimize grid cells fol-
lowing a horizontal localization radius of 500 km. We use
an inflation factor 1= 0.03 and a regularization constant
γ = 1. Moreover, we impose a zero floor on emissions; a
lognormal emissions spread (Sect. 3.2) would be a better
way to prevent negative emissions (Maasakkers et al., 2019).
We aggregate TROPOMI methane observations into super-
observations on the GEOS-Chem 2.0◦× 2.5◦ grid, reducing
errors following Eq. (8), with individual observation error
σi= 17 ppb, transport error σtransport= 6.1 ppb, and error cor-
relation c = 0.28, which are values empirically determined
for TROPOMI methane by Chen et. al. (2023).

4.2 Posterior solution and evaluation

Figure 4 shows the adjustment of global methane concen-
trations (Fig. 4a) and emissions (Fig. 4b) from the assimila-
tion calculation relative to the prior emission inventory used
in the control simulation. The control simulation produces
methane concentrations slightly higher than observed by
TROPOMI in January–June, leading to a downward correc-
tion of emissions. In July the situation reverses sharply as the
control simulation falls well below TROPOMI observations,
likely because of a seasonal underestimate of prior emis-
sions from boreal wetlands and rice cultivation (Maasakkers
et al., 2019). The assimilation responds with increased emis-
sions but with a 1-month time lag reflecting the need to ac-
cumulate sufficient observations to inform the state vector.
CHEEREIO’s run-in-place capability (Sect. 3.3.1) would al-
low the LETKF algorithm to mitigate this lag, as would a
sliding-window approach such as that used by the Carbon
Tracker CH4 system (Bruhwiler et al., 2014; Liu et al., 2019).

Figure 5 shows the prior and posterior emissions for De-
cember 2019, along with the posterior error standard devia-
tion. Figure 6 evaluates the ability of the posterior simulation

to better fit the TROPOMI observations in that same month.
Model bias is reduced by the LETKF assimilation procedure,
with a mean bias of 1.2± 10.6 ppb in the ensemble (assim-
ilated) mean compared to −16.1± 12.3 ppb in the prior (no
assimilation) simulation.

The use of CHEEREIO to optimize methane emissions
represents a substantial improvement in computational per-
formance relative to an analytical inversion approach. Qu
et al. (2021) previously applied the analytical approach
with GEOS-Chem to optimize global methane emissions at
2◦× 2.5◦ resolution for 2019. Their formulation had 4190
state vector elements, which required a total of 4190 per-
turbed GEOS-Chem simulations. By contrast, our approach
only required 24 GEOS-Chem simulations to form the en-
semble. Within CHEEREIO, the model spent an average
of 29.8 % of wall time running GEOS-Chem and 70.2 %
running LETKF routines. The relatively high overhead of
LETKF routines occurs in part because the methane GEOS-
Chem simulations are relatively fast; full oxidant–aerosol
chemistry simulations are considerably more expensive but
will have a similar LETKF overhead cost. Accounting for the
relatively high LETKF overhead of CHEEREIO, we achieve
a factor of 52× reduction in computational costs relative to
an equivalent analytical inversion. On an annual basis, our
results suggest a 6.5 % increase in global emissions relative
to the prior, while Qu et al. (2021) suggest an increase of
2.6 % in global emissions for 2019, but they also decreased
global tropospheric OH by 5.7 % (86 % of the total methane
sink). Thus, our results are globally consistent. Some spa-
tial patterns are consistent between the two inversions (in-
creases in South and East Asia), while others are not (North
America and Europe). Qu et al. (2021) used an older ver-
sion of TROPOMI data more subject to retrieval artifacts, as
documented by Lorente et al. (2021a). Further comparison
of LETKF and analytical inversions using the same observa-
tions would be of interest.
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Figure 5. Prior and posterior estimates of methane emissions in December 2019, as well as error standard deviations for the posterior
estimates. The posterior estimates are the means of the 24-member ensemble, and the posterior error standard deviations are defined by the
spread in the ensemble.

Figure 6. Comparison of simulated dry column mixing ratios (XCH4) with prior or posterior emissions to TROPOMI observations for
December 2019. Values are monthly mean differences between the simulated XCH4 (with TROPOMI observation operator applied) and
TROPOMI observations. Mean bias and standard deviation are given in the inset.

5 Conclusions and future development

We presented the CHemistry and Emissions REanalysis
Interface with Observations (CHEEREIO), a user-friendly
Python-based tool that supports localized ensemble trans-
form Kalman filter (LETKF) chemical data assimilation
(including emissions inversion) powered by the GEOS-
Chem chemical transport model (CTM). CHEEREIO pro-
vides application-ready and versatile software for users to
exploit observations of atmospheric composition from satel-
lites and other platforms to infer emissions and optimize
3D concentration fields, including error characterization.
The CHEEREIO source code is available for download

at https://github.com/drewpendergrass/CHEEREIO (last ac-
cess: 22 August 2023) and is documented at https://cheereio.
readthedocs.io (last access: 22 August 2023).

We choose the LETKF algorithm because of its general ap-
plicability for linear and nonlinear problems, multiple obser-
vational data streams, flexible state vector definition, and er-
ror characterization of the solution. Its ensemble-based struc-
ture is well-suited to developing a simple but powerful tool
that requires neither the forward model adjoint nor modifi-
cations to model source code and that can be run on super-
computing clusters as an embarrassingly parallel task. Use
of GEOS-Chem as a forward model allows a wide range of
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applications to tropospheric and stratospheric chemistry, as
well as simpler linear problems (such as CO2 or methane in-
versions), on regional scales with spatial resolution down to
25 km (native resolution of GEOS-Chem) as well as global
scales. A critical component of GEOS-Chem is its data input
module HEMCO, which allows emissions updates from the
assimilation steps to pass seamlessly to GEOS-Chem with-
out code modification.

We designed CHEEREIO so that users can specify their
data assimilation problem through a basic configuration file
expressing the state vector to be optimized, the prior infor-
mation, the GEOS-Chem specifications (type of simulation,
resolution, assimilation period), and the LETKF parameter
information. LETKF implementation is handled under the
hood by a suite of CHEEREIO scripts that do not require user
familiarity. Users can readily add new observation operators
as needed without modifying the rest of the CHEEREIO code
base.

We demonstrated CHEEREIO’s ability with an example
application of assimilating concentrations and emissions of
atmospheric methane for 1 full year using observations from
TROPOMI. The entire demonstration was run out of the
box, with no additional coding beyond the base CHEEREIO
code. Output figures and statistics presented here were auto-
generated by the CHEEREIO post-processing utility. Ac-
counting for the relatively high overhead of the LETKF com-
putation in the methane case, our approach represents a factor
of 52 reduction in computational cost relative to an equiv-
alent analytical inversion. Because of computational cost
savings, we envision CHEEREIO’s methane data assimila-
tion serving as a global complement to the regional nested-
grid simulations offered by the Integrated Methane Inversion
(IMI), a similar software platform designed for analytical
methane inversions (Varon et al., 2022).

More work can be done to improve CHEEREIO and ex-
pand its capability. Although CHEEREIO is designed as a
lightweight software wrapper that is accessible to the GEOS-
Chem community, future development will incorporate soft-
ware components from the Joint Effort for Data Assimila-
tion Integration (JEDI). In particular, we plan to support ob-
servation operators implemented as part of the JEDI Unified
Forward Operator (UFO) initiative, allowing users to lever-
age the wide library of instruments supported by JEDI with-
out duplicating code themselves. The LETKF algorithm is
agnostic to the forward model, making it practical in the-
ory to use any chemical transport model as a forward model
for CHEEREIO. In practice, models that use HEMCO for
emissions input would be easiest to support. The NASA
GEOS and NCAR CESM Earth system models have adopted
HEMCO (Lin et al., 2021), and the LETKF approach imple-
mented in CHEEREIO would allow optimization of emis-
sions as part of chemical data assimilation in these mod-
els. A benefit of assimilation within coupled meteorology–
chemistry models is that transport errors could be explicitly
represented.

Because CHEEREIO is designed to take advantage of
the embarrassingly parallel LETKF algorithm without us-
ing shared memory, it is reasonably straightforward to ex-
tend the system to models parallelized with MPI such as the
high-performance version of GEOS-Chem (GCHP). Further
improvements to the LETKF parallelization routine, in par-
ticular methods to share memory resources within Python,
can also be applied to reduce I/O overhead, reduce mem-
ory use, and improve assimilation wall time. CHEEREIO
can be ported on the cloud, taking advantage of GEOS-Chem
and satellite data already hosted there (Zhuang et al., 2019,
2020; Varon et al., 2022), thus bringing computing capac-
ity to big data rather than requiring cumbersome data down-
loads. Cloud implementation would facilitate the develop-
ment of near-real-time chemical data assimilation products
for emissions monitoring and air quality forecasts.

Code availability. The CHEEREIO 1.0 source code is available
at https://github.com/drewpendergrass/CHEEREIO (last access: 22
August 2023) and is documented at https://cheereio.readthedocs.io
(last access: 22 August 2023). The version of CHEEREIO used
in this paper is archived at https://doi.org/10.5281/zenodo.7781437
(Pendergrass, 2023a). GEOS-Chem version 14.0.2 source code is
archived at https://doi.org/10.5281/zenodo.7383492 (The Interna-
tional GEOS-Chem User Community, 2022).

Data availability. The CHEEREIO model output from the
“Demonstration simulation setup” section of the paper is
available at https://doi.org/10.5281/zenodo.7806312 (Pender-
grass, 2023b) and contains all necessary data for reproducing
Figs. 3–6 including prior methane emissions, posterior methane
emissions, and TROPOMI XCH4 paired with simulated prior
and posterior GEOS-Chem XCH4. The raw TROPOMI sci-
ence data fed into CHEEREIO are available from SRON
(https://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/ch4/,
last access: 6 April 2023, Lorente et al., 2021b) or on request.

Author contributions. DCP and DJJ contributed to the study con-
ceptualization. DCP developed the model code, with contributions
from DJV, HN, and MS. KM, KWB, DJJ, and DCP contributed
to the method development. DCP performed the data analysis.
DCP wrote the original draft, and all authors reviewed and edited
the paper.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Geosci. Model Dev., 16, 4793–4810, 2023 https://doi.org/10.5194/gmd-16-4793-2023

https://github.com/drewpendergrass/CHEEREIO
https://cheereio.readthedocs.io
https://doi.org/10.5281/zenodo.7781437
https://doi.org/10.5281/zenodo.7383492
https://doi.org/10.5281/zenodo.7806312
https://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/ch4/


D. C. Pendergrass et al.: CHEEREIO 1.0 4807

Acknowledgements. We thank the two anonymous reviewers for
their comments. Part of the research was conducted at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with NASA.

Financial support. This research has been supported by the Na-
tional Aeronautics and Space Administration (NASA; Carbon Mon-
itoring System; grant no. 80NSSC21K1057). Drew C. Pendergrass
was funded by an NSF Graduate Research Fellowship Program
(GRFP) grant.

Review statement. This paper was edited by Po-Lun Ma and re-
viewed by two anonymous referees.

References

Asch, M., Bocquet, M., and Nodet, M.: Data Assimilation, in:
Fundamentals of Algorithms, Society for Industrial and Applied
Mathematics, https://doi.org/10.1137/1.9781611974546, 2016.

Bisht, J. S. H., Patra, P. K., Takigawa, M., Sekiya, T., Kanaya,
Y., Saitoh, N., and Miyazaki, K.: Estimation of CH4 emission
based on an advanced 4D-LETKF assimilation system, Geosci.
Model Dev., 16, 1823–1838, https://doi.org/10.5194/gmd-16-
1823-2023, 2023.

Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R.,
Carmichael, G. R., Flemming, J., Inness, A., Pagowski, M., Pérez
Camaño, J. L., Saide, P. E., San Jose, R., Sofiev, M., Vira, J.,
Baklanov, A., Carnevale, C., Grell, G., and Seigneur, C.: Data
assimilation in atmospheric chemistry models: current status and
future prospects for coupled chemistry meteorology models, At-
mos. Chem. Phys., 15, 5325–5358, https://doi.org/10.5194/acp-
15-5325-2015, 2015.

Brasseur, G. and Jacob, D.: Modeling of Atmo-
spheric Chemistry, Cambridge University Press,
https://doi.org/10.1017/9781316544754, 2017.

Bruhwiler, L., Dlugokencky, E., Masarie, K., Ishizawa, M., An-
drews, A., Miller, J., Sweeney, C., Tans, P., and Worthy, D.:
CarbonTracker−CH4 : an assimilation system for estimating
emissions of atmospheric methane, Atmos. Chem. Phys., 14,
8269–8293, https://doi.org/10.5194/acp-14-8269-2014, 2014.

Chen, Z., Jacob, D. J., Gautam, R., Omara, M., Stavins, R. N.,
Stowe, R. C., Nesser, H., Sulprizio, M. P., Lorente, A., Varon,
D. J., Lu, X., Shen, L., Qu, Z., Pendergrass, D. C., and Han-
cock, S.: Satellite quantification of methane emissions and oil–
gas methane intensities from individual countries in the Mid-
dle East and North Africa: implications for climate action, At-
mos. Chem. Phys., 23, 5945–5967, https://doi.org/10.5194/acp-
23-5945-2023, 2023.

Courtier, P., Thépaut, J.-N., and Hollingsworth, A.: A strategy
for operational implementation of 4D-Var, using an incre-
mental approach, Q. J. Roy. Meteor. Soc., 120, 1367–1387,
https://doi.org/10.1002/qj.49712051912, 1994.

Dai, T., Cheng, Y., Goto, D., Li, Y., Tang, X., Shi, G., and Naka-
jima, T.: Revealing the sulfur dioxide emission reductions in
China by assimilating surface observations in WRF-Chem, At-

mos. Chem. Phys., 21, 4357–4379, https://doi.org/10.5194/acp-
21-4357-2021, 2021.

Ding, J., van der A, R. J., Mijling, B., and Levelt, P. F.:
Space-based NOx emission estimates over remote regions
improved in DECSO, Atmos. Meas. Tech., 10, 925–938,
https://doi.org/10.5194/amt-10-925-2017, 2017.

Eastham, S. D., Long, M. S., Keller, C. A., Lundgren, E., Yan-
tosca, R. M., Zhuang, J., Li, C., Lee, C. J., Yannetti, M., Auer,
B. M., Clune, T. L., Kouatchou, J., Putman, W. M., Thompson,
M. A., Trayanov, A. L., Molod, A. M., Martin, R. V., and Ja-
cob, D. J.: GEOS-Chem High Performance (GCHP v11-02c):
a next-generation implementation of the GEOS-Chem chemi-
cal transport model for massively parallel applications, Geosci.
Model Dev., 11, 2941–2953, https://doi.org/10.5194/gmd-11-
2941-2018, 2018.

Elbern, H. and Schmidt, H.: Ozone episode analysis
by four-dimensional variational chemistry data assim-
ilation, J. Geophys. Res.-Atmos., 106, 3569–3590,
https://doi.org/10.1029/2000JD900448, 2001.

Emili, E., Barret, B., Massart, S., Le Flochmoen, E., Piacen-
tini, A., El Amraoui, L., Pannekoucke, O., and Cariolle,
D.: Combined assimilation of IASI and MLS observations
to constrain tropospheric and stratospheric ozone in a global
chemical transport model, Atmos. Chem. Phys., 14, 177–198,
https://doi.org/10.5194/acp-14-177-2014, 2014.

Eskes, H. J., Velthoven, P. F. J. V., Valks, P. J. M., and Kelder, H.
M., Assimilation of GOME total-ozone satellite observations in
a three-dimensional tracer-transport model, Q. J. Roy. Meteor.
Soc., 129, 1663–1681, https://doi.org/10.1256/qj.02.14, 2003.

Feng, L., Palmer, P. I., Zhu, S., Parker, R. J., and Liu, Y.: Tropi-
cal methane emissions explain large fraction of recent changes
in global atmospheric methane growth rate, Nat. Commun., 13,
1378, https://doi.org/10.1038/s41467-022-28989-z, 2022.

Feng, L., Palmer, P. I., Parker, R. J., Lunt, M. F., and
Bösch, H.: Methane emissions are predominantly responsi-
ble for record-breaking atmospheric methane growth rates
in 2020 and 2021, Atmos. Chem. Phys., 23, 4863–4880,
https://doi.org/10.5194/acp-23-4863-2023, 2023.

Flemming, J., Huijnen, V., Arteta, J., Bechtold, P., Beljaars, A.,
Blechschmidt, A.-M., Diamantakis, M., Engelen, R. J., Gaudel,
A., Inness, A., Jones, L., Josse, B., Katragkou, E., Marecal,
V., Peuch, V.-H., Richter, A., Schultz, M. G., Stein, O., and
Tsikerdekis, A.: Tropospheric chemistry in the Integrated Fore-
casting System of ECMWF, Geosci. Model Dev., 8, 975–1003,
https://doi.org/10.5194/gmd-8-975-2015, 2015.

Heald, C. L., Jacob, D. J., Jones, D. B. A., Palmer, P. I., Logan,
J. A., Streets, D. G., Sachse, G. W., Gille, J. C., Hoffman, R.
N., and Nehrkorn, T.: Comparative inverse analysis of satel-
lite (MOPITT) and aircraft (TRACE-P) observations to estimate
Asian sources of carbon monoxide, J. Geophys. Res.-Atmos.,
109, D23306, https://doi.org/10.1029/2004JD005185, 2004.

Hu, L., Keller, C. A., Long, M. S., Sherwen, T., Auer, B., Da Silva,
A., Nielsen, J. E., Pawson, S., Thompson, M. A., Trayanov, A.
L., Travis, K. R., Grange, S. K., Evans, M. J., and Jacob, D.
J.: Global simulation of tropospheric chemistry at 12.5 km res-
olution: performance and evaluation of the GEOS-Chem chem-
ical module (v10-1) within the NASA GEOS Earth system
model (GEOS-5 ESM), Geosci. Model Dev., 11, 4603–4620,
https://doi.org/10.5194/gmd-11-4603-2018, 2018.

https://doi.org/10.5194/gmd-16-4793-2023 Geosci. Model Dev., 16, 4793–4810, 2023

https://doi.org/10.1137/1.9781611974546
https://doi.org/10.5194/gmd-16-1823-2023
https://doi.org/10.5194/gmd-16-1823-2023
https://doi.org/10.5194/acp-15-5325-2015
https://doi.org/10.5194/acp-15-5325-2015
https://doi.org/10.1017/9781316544754
https://doi.org/10.5194/acp-14-8269-2014
https://doi.org/10.5194/acp-23-5945-2023
https://doi.org/10.5194/acp-23-5945-2023
https://doi.org/10.1002/qj.49712051912
https://doi.org/10.5194/acp-21-4357-2021
https://doi.org/10.5194/acp-21-4357-2021
https://doi.org/10.5194/amt-10-925-2017
https://doi.org/10.5194/gmd-11-2941-2018
https://doi.org/10.5194/gmd-11-2941-2018
https://doi.org/10.1029/2000JD900448
https://doi.org/10.5194/acp-14-177-2014
https://doi.org/10.1256/qj.02.14
https://doi.org/10.1038/s41467-022-28989-z
https://doi.org/10.5194/acp-23-4863-2023
https://doi.org/10.5194/gmd-8-975-2015
https://doi.org/10.1029/2004JD005185
https://doi.org/10.5194/gmd-11-4603-2018


4808 D. C. Pendergrass et al.: CHEEREIO 1.0

Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient
data assimilation for spatiotemporal chaos: A local en-
semble transform Kalman filter, Physica D, 230, 112–126,
https://doi.org/10.1016/j.physd.2006.11.008, 2007.

Inness, A., Blechschmidt, A.-M., Bouarar, I., Chabrillat, S., Cre-
pulja, M., Engelen, R. J., Eskes, H., Flemming, J., Gaudel,
A., Hendrick, F., Huijnen, V., Jones, L., Kapsomenakis, J.,
Katragkou, E., Keppens, A., Langerock, B., de Mazière, M.,
Melas, D., Parrington, M., Peuch, V. H., Razinger, M., Richter,
A., Schultz, M. G., Suttie, M., Thouret, V., Vrekoussis, M.,
Wagner, A., and Zerefos, C.: Data assimilation of satellite-
retrieved ozone, carbon monoxide and nitrogen dioxide with
ECMWF’s Composition-IFS, Atmos. Chem. Phys., 15, 5275–
5303, https://doi.org/10.5194/acp-15-5275-2015, 2015.

Jiang, Z., McDonald, B. C., Worden, H., Worden, J. R., Miyazaki,
K., Qu, Z., Henze, D. K., Jones, D. B. A., Arellano, A.
F., Fischer, E. V., Zhu, L., and Boersma, K. F.: Unex-
pected slowdown of US pollutant emission reduction in the
past decade, P. Natl. Acad. Sci. USA, 115, 5099–5104,
https://doi.org/10.1073/pnas.1801191115, 2018.

Kahnert, M.: Variational data analysis of aerosol species in a
regional CTM: Background error covariance constraint and
aerosol optical observation operators, Tellus B, 60, 753–770,
https://doi.org/10.1111/j.1600-0889.2008.00377.x, 2008.

Kalnay, E.: Atmospheric Modeling, Data Assimilation and
Predictability, Cambridge University Press, Cambridge,
https://doi.org/10.1017/CBO9780511802270, 2003.

Keller, C. A., Long, M. S., Yantosca, R. M., Da Silva, A.
M., Pawson, S., and Jacob, D. J.: HEMCO v1.0: a ver-
satile, ESMF-compliant component for calculating emissions
in atmospheric models, Geosci. Model Dev., 7, 1409–1417,
https://doi.org/10.5194/gmd-7-1409-2014, 2014.

Keller, C. A., Knowland, K. E., Duncan, B. N., Liu, J., An-
derson, D. C., Das, S., Lucchesi, R. A., Lundgren, E. W.,
Nicely, J. M., Nielsen, E., Ott, L. E., Saunders, E., Strode, S.
A., Wales, P. A., Jacob, D. J., and Pawson, S.: Description
of the NASA GEOS Composition Forecast Modeling System
GEOS-CF v1.0, J. Adv. Model. Earth Sy., 13, e2020MS002413,
https://doi.org/10.1029/2020MS002413, 2021.

Kong, Y., Zheng, B., Zhang, Q., and He, K.: Global and regional
carbon budget for 2015–2020 inferred from OCO-2 based on
an ensemble Kalman filter coupled with GEOS-Chem, Atmos.
Chem. Phys., 22, 10769–10788, https://doi.org/10.5194/acp-22-
10769-2022, 2022.

Lin, H., Jacob, D. J., Lundgren, E. W., Sulprizio, M. P., Keller,
C. A., Fritz, T. M., Eastham, S. D., Emmons, L. K., Camp-
bell, P. C., Baker, B., Saylor, R. D., and Montuoro, R.: Har-
monized Emissions Component (HEMCO) 3.0 as a versatile
emissions component for atmospheric models: application in the
GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-
Aerosol, and NOAA UFS models, Geosci. Model Dev., 14,
5487–5506, https://doi.org/10.5194/gmd-14-5487-2021, 2021.

Liu, J., Bowman, K. W., and Lee, M.: Comparison between the Lo-
cal Ensemble Transform Kalman Filter (LETKF) and 4D-Var in
atmospheric CO2 flux inversion with the Goddard Earth Observ-
ing System-Chem model and the observation impact diagnostics
from the LETKF, J. Geophys. Res.-Atmos., 121, 13066–13-087,
https://doi.org/10.1002/2016JD025100, 2016.

Liu, Y., Kalnay, E., Zeng, N., Asrar, G., Chen, Z., and Jia, B.: Es-
timating surface carbon fluxes based on a local ensemble trans-
form Kalman filter with a short assimilation window and a long
observation window: an observing system simulation experiment
test in GEOS-Chem 10.1, Geosci. Model Dev., 12, 2899–2914,
https://doi.org/10.5194/gmd-12-2899-2019, 2019.

Long, M. S., Yantosca, R., Nielsen, J. E., Keller, C. A., da
Silva, A., Sulprizio, M. P., Pawson, S., and Jacob, D. J.:
Development of a grid-independent GEOS-Chem chemical
transport model (v9-02) as an atmospheric chemistry module
for Earth system models, Geosci. Model Dev., 8, 595–602,
https://doi.org/10.5194/gmd-8-595-2015, 2015.

Lorente, A., Borsdorff, T., Butz, A., Hasekamp, O., aan de Brugh,
J., Schneider, A., Wu, L., Hase, F., Kivi, R., Wunch, D., Pollard,
D. F., Shiomi, K., Deutscher, N. M., Velazco, V. A., Roehl, C.
M., Wennberg, P. O., Warneke, T., and Landgraf, J.: Methane
retrieved from TROPOMI: improvement of the data product
and validation of the first 2 years of measurements, Atmos.
Meas. Tech., 14, 665–684, https://doi.org/10.5194/amt-14-665-
2021, 2021a.

Lorente, A., Borsdorff, T., aan de Brugh, J., Landgraf,
J., and Hasekamp, O.: SRON S5P – RemoTeC sci-
entific TROPOMI XCH4 dataset, Zenodo [data set],
https://doi.org/10.5281/zenodo.4447228, 2021b.

Lu, X., Jacob, D. J., Zhang, Y., Maasakkers, J. D., Sulprizio, M. P.,
Shen, L., Qu, Z., Scarpelli, T. R., Nesser, H., Yantosca, R. M.,
Sheng, J., Andrews, A., Parker, R. J., Boesch, H., Bloom, A. A.,
and Ma, S.: Global methane budget and trend, 2010–2017: com-
plementarity of inverse analyses using in situ (GLOBALVIEW-
plus CH4 ObsPack) and satellite (GOSAT) observations, At-
mos. Chem. Phys., 21, 4637–4657, https://doi.org/10.5194/acp-
21-4637-2021, 2021.

Ma, C., Wang, T., Mizzi, A. P., Anderson, J. L., Zhuang,
B., Xie, M., and Wu, R.: Multiconstituent Data Assimila-
tion With WRF-Chem/DART: Potential for Adjusting Anthro-
pogenic Emissions and Improving Air Quality Forecasts Over
Eastern China, J. Geophys. Res.-Atmos., 124, 7393–7412,
https://doi.org/10.1029/2019JD030421, 2019.

Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Scarpelli, T. R.,
Nesser, H., Sheng, J.-X., Zhang, Y., Hersher, M., Bloom, A.
A., Bowman, K. W., Worden, J. R., Janssens-Maenhout, G., and
Parker, R. J.: Global distribution of methane emissions, emis-
sion trends, and OH concentrations and trends inferred from
an inversion of GOSAT satellite data for 2010–2015, Atmos.
Chem. Phys., 19, 7859–7881, https://doi.org/10.5194/acp-19-
7859-2019, 2019.

Martin, R. V., Eastham, S. D., Bindle, L., Lundgren, E. W.,
Clune, T. L., Keller, C. A., Downs, W., Zhang, D., Lucch-
esi, R. A., Sulprizio, M. P., Yantosca, R. M., Li, Y., Estrada,
L., Putman, W. M., Auer, B. M., Trayanov, A. L., Pawson,
S., and Jacob, D. J.: Improved advection, resolution, perfor-
mance, and community access in the new generation (version
13) of the high-performance GEOS-Chem global atmospheric
chemistry model (GCHP), Geosci. Model Dev., 15, 8731–8748,
https://doi.org/10.5194/gmd-15-8731-2022, 2022.

Mijling, B. and van der A, R. J.: Using daily satellite obser-
vations to estimate emissions of short-lived air pollutants on
a mesoscopic scale, J. Geophys. Res.-Atmos., 117, D17302,
https://doi.org/10.1029/2012JD017817, 2012.

Geosci. Model Dev., 16, 4793–4810, 2023 https://doi.org/10.5194/gmd-16-4793-2023

https://doi.org/10.1016/j.physd.2006.11.008
https://doi.org/10.5194/acp-15-5275-2015
https://doi.org/10.1073/pnas.1801191115
https://doi.org/10.1111/j.1600-0889.2008.00377.x
https://doi.org/10.1017/CBO9780511802270
https://doi.org/10.5194/gmd-7-1409-2014
https://doi.org/10.1029/2020MS002413
https://doi.org/10.5194/acp-22-10769-2022
https://doi.org/10.5194/acp-22-10769-2022
https://doi.org/10.5194/gmd-14-5487-2021
https://doi.org/10.1002/2016JD025100
https://doi.org/10.5194/gmd-12-2899-2019
https://doi.org/10.5194/gmd-8-595-2015
https://doi.org/10.5194/amt-14-665-2021
https://doi.org/10.5194/amt-14-665-2021
https://doi.org/10.5281/zenodo.4447228
https://doi.org/10.5194/acp-21-4637-2021
https://doi.org/10.5194/acp-21-4637-2021
https://doi.org/10.1029/2019JD030421
https://doi.org/10.5194/acp-19-7859-2019
https://doi.org/10.5194/acp-19-7859-2019
https://doi.org/10.5194/gmd-15-8731-2022
https://doi.org/10.1029/2012JD017817


D. C. Pendergrass et al.: CHEEREIO 1.0 4809

Miyazaki, K., Eskes, H. J., and Sudo, K.: Global NOx emis-
sion estimates derived from an assimilation of OMI tropo-
spheric NO2 columns, Atmos. Chem. Phys., 12, 2263–2288,
https://doi.org/10.5194/acp-12-2263-2012, 2012a.

Miyazaki, K., Eskes, H. J., Sudo, K., Takigawa, M., van Weele, M.,
and Boersma, K. F.: Simultaneous assimilation of satellite NO2,
O3, CO, and HNO3 data for the analysis of tropospheric chemi-
cal composition and emissions, Atmos. Chem. Phys., 12, 9545–
9579, https://doi.org/10.5194/acp-12-9545-2012, 2012b.

Miyazaki, K., Eskes, H. J., and Sudo, K.: A tropospheric chem-
istry reanalysis for the years 2005–2012 based on an assim-
ilation of OMI, MLS, TES, and MOPITT satellite data, At-
mos. Chem. Phys., 15, 8315–8348, https://doi.org/10.5194/acp-
15-8315-2015, 2015.

Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K.,
and Kanaya, Y.: Decadal changes in global surface NOx emis-
sions from multi-constituent satellite data assimilation, Atmos.
Chem. Phys., 17, 807–837, https://doi.org/10.5194/acp-17-807-
2017, 2017.

Miyazaki, K., Bowman, K., Sekiya, T., Eskes, H., Boersma, F., Wor-
den, H., Livesey, N., Payne, V. H., Sudo, K., Kanaya, Y., Taki-
gawa, M., and Ogochi, K.: Updated tropospheric chemistry re-
analysis and emission estimates, TCR-2, for 2005–2018, Earth
Syst. Sci. Data, 12, 2223–2259, https://doi.org/10.5194/essd-12-
2223-2020, 2020.

Nesser, H., Jacob, D. J., Maasakkers, J. D., Scarpelli, T. R., Sul-
prizio, M. P., Zhang, Y., and Rycroft, C. H.: Reduced-cost
construction of Jacobian matrices for high-resolution inver-
sions of satellite observations of atmospheric composition, At-
mos. Meas. Tech., 14, 5521–5534, https://doi.org/10.5194/amt-
14-5521-2021, 2021.

Pendergrass, D.: drewpendergrass/CHEEREIO:
CHEEREIO v1.0.0 release (v1.0.0), Zenodo [code],
https://doi.org/10.5281/zenodo.7781437, 2023a.

Pendergrass, D.: Replication Data for: CHEEREIO 1.0: a
versatile and user-friendly ensemble-based chemical data
assimilation and emissions inversion platform for the
GEOS-Chem chemical transport model, Zenodo [data set],
https://doi.org/10.5281/zenodo.7806312, 2023b.

Peters, W., Miller, J. B., Whitaker, J., Denning, A. S., Hirsch, A.,
Krol, M. C., Zupanski, D., Bruhwiler, L., and Tans, P. P.: An en-
semble data assimilation system to estimate CO2 surface fluxes
from atmospheric trace gas observations, J. Geophys. Res.-
Atmos., 110, D24304, https://doi.org/10.1029/2005JD006157,
2005.

Qu, Z., Henze, D. K., Li, C., Theys, N., Wang, Y., Wang,
J., Wang, W., Han, J., Shim, C., Dickerson, R. R., and
Ren, X.: SO2 Emission Estimates Using OMI SO2 Retrievals
for 2005–2017, J. Geophys. Res.-Atmos., 124, 8336–8359,
https://doi.org/10.1029/2019JD030243, 2019.

Qu, Z., Jacob, D. J., Shen, L., Lu, X., Zhang, Y., Scarpelli, T.
R., Nesser, H., Sulprizio, M. P., Maasakkers, J. D., Bloom,
A. A., Worden, J. R., Parker, R. J., and Delgado, A. L.:
Global distribution of methane emissions: a comparative in-
verse analysis of observations from the TROPOMI and GOSAT
satellite instruments, Atmos. Chem. Phys., 21, 14159–14175,
https://doi.org/10.5194/acp-21-14159-2021, 2021.

Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: The-
ory and Practice, Series on Atmospheric, Oceanic and Planetary

Physics – Vol. 2, World Scientific Publishing Co. Pte. Ltd., Sin-
gapore, https://doi.org/10.1142/3171, 2000.

Schuh, A. E., Jacobson, A. R., Basu, S., Weir, B., Baker, D., Bow-
man, K., Chevallier, F., Crowell, S., Davis, K. J., Deng, F., Den-
ning, S., Feng, L., Jones, D., Liu, J., and Palmer, P. I.: Quanti-
fying the Impact of Atmospheric Transport Uncertainty on CO2
Surface Flux Estimates, Global Biogeochem. Cy., 33, 484–500,
https://doi.org/10.1029/2018GB006086, 2019.

Schuh, A. E., Byrne, B., Jacobson, A. R., Crowell, S. M. R.,
Deng, F., Baker, D. F., Johnson, M. S., Philip, S., and Weir, B.:
On the role of atmospheric model transport uncertainty in es-
timating the Chinese land carbon sink, Nature, 603, E13–E14,
https://doi.org/10.1038/s41586-021-04258-9, 2022.

Stanevich, I., Jones, D. B. A., Strong, K., Keller, M., Henze, D.
K., Parker, R. J., Boesch, H., Wunch, D., Notholt, J., Petri,
C., Warneke, T., Sussmann, R., Schneider, M., Hase, F., Kivi,
R., Deutscher, N. M., Velazco, V. A., Walker, K. A., and
Deng, F.: Characterizing model errors in chemical transport
modeling of methane: using GOSAT XCH4 data with weak-
constraint four-dimensional variational data assimilation, At-
mos. Chem. Phys., 21, 9545–9572, https://doi.org/10.5194/acp-
21-9545-2021, 2021.

Tange, O.: GNU Parallel 2018, Zenodo [code],
https://doi.org/10.5281/zenodo.1146014, 2018.

The International GEOS-Chem User Community: geoschem/GC-
Classic: GEOS-Chem Classic 14.0.2 (14.0.2), Zenodo [code],
https://doi.org/10.5281/zenodo.7383492, 2022.

Trémolet, Y. and Auligné, T.: The Joint Effort for Data Assimila-
tion Integration (JEDI), JCSDA Quarterly Newsletter, 66, 1–5,
https://doi.org/10.25923/RB19-0Q26, 2020.

van der Graaf, S., Dammers, E., Segers, A., Kranenburg, R., Schaap,
M., Shephard, M. W., and Erisman, J. W.: Data assimilation of
CrIS NH3 satellite observations for improving spatiotemporal
NH3 distributions in LOTOS-EUROS, Atmos. Chem. Phys., 22,
951–972, https://doi.org/10.5194/acp-22-951-2022, 2022.

Varon, D. J., Jacob, D. J., Sulprizio, M., Estrada, L. A., Downs,
W. B., Shen, L., Hancock, S. E., Nesser, H., Qu, Z., Penn, E.,
Chen, Z., Lu, X., Lorente, A., Tewari, A., and Randles, C. A.:
Integrated Methane Inversion (IMI 1.0): a user-friendly, cloud-
based facility for inferring high-resolution methane emissions
from TROPOMI satellite observations, Geosci. Model Dev., 15,
5787–5805, https://doi.org/10.5194/gmd-15-5787-2022, 2022.

Wunch, D., Wennberg, P. O., Toon, G. C., Connor, B. J., Fisher,
B., Osterman, G. B., Frankenberg, C., Mandrake, L., O’Dell,
C., Ahonen, P., Biraud, S. C., Castano, R., Cressie, N., Crisp,
D., Deutscher, N. M., Eldering, A., Fisher, M. L., Griffith, D.
W. T., Gunson, M., Heikkinen, P., Keppel-Aleks, G., Kyrö,
E., Lindenmaier, R., Macatangay, R., Mendonca, J., Messer-
schmidt, J., Miller, C. E., Morino, I., Notholt, J., Oyafuso, F.
A., Rettinger, M., Robinson, J., Roehl, C. M., Salawitch, R.
J., Sherlock, V., Strong, K., Sussmann, R., Tanaka, T., Thomp-
son, D. R., Uchino, O., Warneke, T., and Wofsy, S. C.: A
method for evaluating bias in global measurements of CO2 to-
tal columns from space, Atmos. Chem. Phys., 11, 12317–12337,
https://doi.org/10.5194/acp-11-12317-2011, 2011.

Zhu, S., Feng, L., Liu, Y., Wang, J., and Yang, D.: Decadal Methane
Emission Trend Inferred from Proxy GOSAT XCH4 Retrievals:
Impacts of Transport Model Spatial Resolution, Adv. Atmos.

https://doi.org/10.5194/gmd-16-4793-2023 Geosci. Model Dev., 16, 4793–4810, 2023

https://doi.org/10.5194/acp-12-2263-2012
https://doi.org/10.5194/acp-12-9545-2012
https://doi.org/10.5194/acp-15-8315-2015
https://doi.org/10.5194/acp-15-8315-2015
https://doi.org/10.5194/acp-17-807-2017
https://doi.org/10.5194/acp-17-807-2017
https://doi.org/10.5194/essd-12-2223-2020
https://doi.org/10.5194/essd-12-2223-2020
https://doi.org/10.5194/amt-14-5521-2021
https://doi.org/10.5194/amt-14-5521-2021
https://doi.org/10.5281/zenodo.7781437
https://doi.org/10.5281/zenodo.7806312
https://doi.org/10.1029/2005JD006157
https://doi.org/10.1029/2019JD030243
https://doi.org/10.5194/acp-21-14159-2021
https://doi.org/10.1142/3171
https://doi.org/10.1029/2018GB006086
https://doi.org/10.1038/s41586-021-04258-9
https://doi.org/10.5194/acp-21-9545-2021
https://doi.org/10.5194/acp-21-9545-2021
https://doi.org/10.5281/zenodo.1146014
https://doi.org/10.5281/zenodo.7383492
https://doi.org/10.25923/RB19-0Q26
https://doi.org/10.5194/acp-22-951-2022
https://doi.org/10.5194/gmd-15-5787-2022
https://doi.org/10.5194/acp-11-12317-2011


4810 D. C. Pendergrass et al.: CHEEREIO 1.0

Sci., 39, 1343–1359, https://doi.org/10.1007/s00376-022-1434-
6, 2022.

Zhuang, J., Jacob, D. J., Gaya, J. F., Yantosca, R. M., Lundgren,
E. W., Sulprizio, M. P., and Eastham, S. D.: Enabling Immediate
Access to Earth Science Models through Cloud Computing: Ap-
plication to the GEOS-Chem Model, B. Am. Meteorol. Soc., 100,
1943–1960, https://doi.org/10.1175/BAMS-D-18-0243.1, 2019.

Zhuang, J., Jacob, D. J., Lin, H., Lundgren, E. W., Yantosca, R.
M., Gaya, J. F., Sulprizio, M. P., and Eastham, S. D.: Enabling
High-Performance Cloud Computing for Earth Science Mod-
eling on Over a Thousand Cores: Application to the GEOS-
Chem Atmospheric Chemistry Model, J. Adv. Model. Earth Sy.,
12, e2020MS002064, https://doi.org/10.1029/2020MS002064,
2020.

Geosci. Model Dev., 16, 4793–4810, 2023 https://doi.org/10.5194/gmd-16-4793-2023

https://doi.org/10.1007/s00376-022-1434-6
https://doi.org/10.1007/s00376-022-1434-6
https://doi.org/10.1175/BAMS-D-18-0243.1
https://doi.org/10.1029/2020MS002064

	Abstract
	Introduction
	CHEEREIO components
	The physical model: GEOS-Chem
	The data assimilation algorithm: localized ensemble transform Kalman filter (LETKF)

	Description of the CHEEREIO platform
	General workflow
	Ensemble initialization
	Runtime
	Job control
	Assimilation computation

	Post-processing

	Example application: global optimization of methane emissions
	Demonstration simulation setup
	Posterior solution and evaluation

	Conclusions and future development
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

